MicroRNA‑10a enhances the metastatic potential of cervical cancer cells by targeting phosphatase and tensin homologue.
نویسندگان
چکیده
Cervical cancer is one of the leading causes of cancer‑related mortality worldwide. Previously, the upregulation of microRNA (miR)‑10a has been identified in human cervical cancer. The present study firstly demonstrated that miR‑10a was markedly upregulated in primary tumor tissues in patients with positive lymph node metastasis (LN+) compared with negative (LN‑) by quantitative polymerase chain reaction. miR‑10a mimics markedly enhanced cervical cancer cell migration and invasion abilities, and accordingly the miR‑10a inhibitor suppressed those functions. Furthermore, these data suggested that the phosphatase and tensin homologue (PTEN) was inhibited by miR‑10a through an miR‑10a binding site within the 3'‑untranslated region of PTEN at the posttranscriptional level, and that miR‑10a mimics promoted nuclear translocation of β‑catenin. Therefore, it was concluded that the overexpression of miR‑10a contributes to metastasis in cervical cancer by targeting PTEN. miR‑10a may therefore be used clinically as a molecular marker for patients with cervical cancer lymph node metastasis.
منابع مشابه
Cancer virotherapy: Targeting cancer cells by microRNA mechanism for selective replication of oncolytic viruses in these cells
Cancer, as one of the most serious public health problems, is the second-leading cause of death in the world after cardiovascular disease. The number of patients and the resulting mortality are increasing worldwide; therefore, early diagnosis, prevention, and effective treatment of cancer are very important. Current treatments such as chemotherapy and radiation therapy are often non-selective a...
متن کاملEVALUATION OF THE EFFECTS OF IBUPROFEN CYTOTOXIC DOSE ON EXPRESSION LEVEL OF EXTRACELLULAR MATRIX DEGRADING MMP-9 AND ANTI-METASTASIS NM23 GENES IN CERVICAL CANCER CELLS
Background & Aim: Although studies have shown that ibuprofen has anticancer effects on many cancer cells, the mechanism of the ibuprofen anticancer effect in cancer cells is not still well understood. The aim of this study was to investigate the effect of cytotoxic concentration of ibuprofen on the expression level of MMP-9 and NM23 genes in cervical cancer cells. Materials & Methods: During t...
متن کاملMicroRNA 26b promotes colorectal cancer metastasis by downregulating phosphatase and tensin homolog and wingless‐type MMTV integration site family member 5A
Invasion and metastasis are crucially important factors in the survival of malignant tumors. Epithelial-mesenchymal transition (EMT) is an early step in metastatic progression and the presence of cancer stem cells is closely related to tumor survival, proliferation, metastasis, and recurrence. Herein we report that ectopic overexpression of microRNA 26b (miR-26b) in colorectal cancer (CRC) cell...
متن کاملNaringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کاملNaringenin Enhances the Anti-Cancer Effect of Cyclophosphamide against MDA-MB-231 Breast Cancer Cells Via Targeting the STAT3 Signaling Pathway
Naringenin is a natural compound with potential anti-cancer effects against several cancer types. Also, its precise molecular mechanisms regarding tumor growth suppression has not been completely elucidated. In the current study the apoptosis-inducing and anti-proliferative effects of Naringenin together with cyclophosphamide were studied in breast cancer cells and the participation of JAK2/ST...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular medicine reports
دوره 10 3 شماره
صفحات -
تاریخ انتشار 2014